Страница статьи Гигиена и санитария

Антиоксидантные системы организма

Антиоксидантные системы организма

В организме токсическое действие активных форм кислорода предотвращается за счет функционирования систем антиоксидантной защиты. В норме сохраняется равновесие между окислительными (прооксидантными) и антиоксидантными системами. Антиоксидантная система защиты представлена ферментными и неферментативными компонентами.

Ферменты антиоксидантной системы:

3. пероксидаза (глутатионпероксидаза),

Наиболее активны эти ферменты в печени, почках и надпочечниках.

Супероксиддисмутаза превращает супероксидные анионы в пероксид водорода:

Супероксидисмутаза является мощным ингибитором свободнорадикального окисления в организме, защищающим биополимеры (белки, нуклеиновые кислоты и др.) от окислительной деструкции. Супероксидисмутаза – индуцируемый фермент, т.е. синтез его увеличивается, если в клетках активируется ПОЛ.

Каталаза является гемопротеином и катализирует реакцию разложения пероксида водорода:

В клетках каталаза локализована в пероксисомах, где образуется наибольшее количество пероксида водорода, а также в лейкоцитах, где она защищает клетки от последствий «респираторного взрыва».

Глутатионпероксидаза – важнейший фермент, обеспечивающий инактивацию пероксида водорода и пероксидных радикалов. Он катализирует восстановление пероксидов при участии трипептида глутатиона. SH-группа глутатиона служит донором электронов и, окисляясь образует дисульфидную форму глутатиона:

Н 2О 2 + 2НS-глутатион ? 2Н 2О + глутатион-S-S-глутатион

Окисленный глутатион восстанавливается глутатионредуктазой:

глутатион-S-S-глутатион + НАДФН+Н + ? 2HS-глутатион + НАДФ +

Глутатионпероксидаза в качестве кофермента использует селен. При его недостатке активность антиоксидантной защиты снижается.

Неферментативные антиоксиданты:

1. Природные водорастворимые антиоксиданты (витамин С; карнозин; таурин; восстановленные тиолы, содержащие SH-группы; цистеин; НS-КоА; белки, содержащие селен). Витамин С участвует в ингибировании ПОЛ с помощью двух механизмов. Во-первых, он восстанавливает окисленную форму витамина Е и поддерживает необходимую концентрацию этого антиоксиданта в мембранах клеток. Во-вторых, витамин С взаимодействует как восстановитель с водорастворимыми активными формами кислорода и инактивирует их.

2. Липофильные низкомолекулярные антиоксиданты, локализованные в мембранах клеток (витамин Е; ?-каротин; КоQ; нафтахоиноны). Витамин Е – наиболее распространенный антиоксидант в природе, способен инактивировать свободные радикалы непосредственно в гидрофобном слое мембран и тем самым предотвращать развитие цепи перекисного окисления. b-каротин, предшественник витамина А, также ингибирует ПОЛ. Уменьшение содержания этого антиоксиданта в тканях приводит к тому, что продукты ПОЛ начинают производить вместо физиологического патологический эффект.

Растительная диета, обогащенная витаминами Е, С, каротиноидами, уменьшает риск развития атеросклероза и заболеваний сердечно-сосудистой системы, обладает антиканцерогенным действием. Действие этих витаминов связано с ингибированием ПОЛ и кислородных радикалов и, следовательно, с поддержанием нормальной структуры компонентов клеток.

Данный текст является ознакомительным фрагментом.

Антиоксидантная система организма

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

Антиоксидантная система организма — совокупность механизмов, которые тормозят аутоокисления в клетке.

Неферментативное аутоокисление, если оно не ограничивается локальной вспышкой, является разрушительным процессом. С периода появления кислорода в атмосфере прокариоты нуждались в постоянной защите от спонтанных реакций окислительного распада их органических компонентов.

Антиоксидантная система включает антиоксиданты, ингибирующие аутоокисление на инициальной стадии перекисного окисления липидов (токоферол, полифенолы) или активных форм кислорода (супероксиддисмутаза — СОД) в мембранах. При этом образующиеся в ходе восстановления частицы с нсспарснным электроном, радикалы токоферола или полифенолов регенерируются аскорбиновой кислотой, содержащейся в гидрофильном слое мембраны. Окисленные формы аскорбата в свою очередь восстанавливаются глутатионом (или эрготионеином), получающим атомы водорода от НАДФ или НАД. Таким образом радикальное ингибирование осуществляется цепью глутатиона (эрготионеин) аскорбат-токоферол (полифенол), транспортирующий электроны (в составе атомов водорода) от пиридиннуклеотидов (НАД и НАДФ) к СР. Это гарантирует стационарный крайне низкий уровень свободнорадикальных состояний липидов и биополимеров в клетке.

Наряду с цепью АО в системе ингибирования свободных радикалов в живой клетке участвуют ферменты, катализирующие окислительно-восстановительные превращения глутатиона и аскорбата, — глутатионзависимые редуктаза и дегидрогеназа, а также расщепляющие перекиси — каталаза и пероксидазы.

Следует отметить, что функционирование двух механизмов защиты — цепи биоантиоксидантов и группы антиперекисных ферментов — зависит от фонда атомов водорода (НАДФ и НАДН). Этот фонд пополняется в процессах биологического ферментативного окисления-дегидрирования энергетических субстратов. Таким образом, достаточный уровень ферментативного катаболизма — оптимально деятельное состояние организма составляет необходимое условие эффективности антиоксидантной системы. В отличие от других физиологических систем (например, свертывания крови или гормональной) даже кратковременная недостаточность антиоксидантной системы не проходит бесследно — повреждаются мембраны и биополимеры.

Срыв антиоксидантной защиты характеризуется развитием свободнорадикальных повреждений разных компонентов клетки и тканей, составляющих СР. Поливалентность проявлений свободнорадикальной патологии в разных органах и тканях, различная чувствительность структур клетки к воздействию продуктов СР свидетельствуют о неодинаковой обеспеченности органов и тканей биоантиоксидантами, иными словами, по-видимому, их антиоксидантная система имеют существенные отличия. Ниже представлены результаты определения содержания основных компонентов антиоксидантной системы в разных органах и тканях, что позволило сделать вывод об их специфичности.

Таким образом, особенностью эритроцитов является большая роль антиперекисных ферментов — каталазы, глутатионпероксидазы, СОД, при врожденных энзимопатиях эритроцитов часто наблюдается гемолитическая анемия. В плазме крови содержится церулоплазмин, обладающий СОД-активностью, отсутствующий в других тканях. Изложенные результаты позволяют представить АС эритроцитов и плазмы: она включает как антирадикальное звено, так и энзимный механизм защиты. Такая структура антиоксидантной системы позволяет достаточно эффективно тормозить СРО липидов и биополимеров благодаря высокому уровню насыщенности эритроцитов кислородом. Существенную роль в ограничении СРО играют липопротеиды — главный носитель токоферола, от них токоферол при контакте с мембранами переходит в эритроциты. В то же время липопротеиды наиболее подвержены аутоокислению.

Читайте также:  Профилактика отравления угарным газом и первая помощь пострадавшим-Управление Роспотребнадзора по Ки

[1], [2], [3], [4], [5], [6]

Специфичность антиоксидантных систем разных органов и тканей

Инициирующее значение неферментативного аутоокисления липидов и биополимеров позволяет отвести пусковую роль в генезе СП недостаточности системы антиоксидантной защиты организма. Функциональная активность антиоксидантной системы разных органов и тканей зависит от ряда факторов. К их числу относятся:

  1. уровень ферментативного катаболизма (дегидрирования) — продукции фонда НАД-Н + НАДФ Н;
  2. степень расходования фонда НАД-Н и НАДФ-Н в биосинтетических процессах;
  3. уровень реакций ферментативного митохондриального окисления НАД-Н;
  4. поступление незаменимых компонентов антиоксидантной системы — токоферола, аскорбата, биофлавоноидов, серосо-держащих аминокислот, эрготионеина, селена и т. д.

С другой стороны, активность антиоксидантной системы зависит от выраженности воздействий индуцирующих СРО липидов, при их чрезмерной активности наступают срыв ингибирования и повышение продукции СР и перекисей.

В разных органах соответственно тканевой специфичности метаболизма превалируют определенные компоненты антиоксидантной системы. Во внеклеточных структурах, не имеющих фонда НАД-Н и НАДФ-Н, существенное значение имеет приток транспортируемых кровью восстановленных форм АО-глутатиона, аскорбата, полифенолов, токоферола. Показатели уровня обеспеченности организма АО, активности антиоксидантных ферментов и содержания продуктов СТО интегративно характеризуют активность антиоксидантной системы организма как целого. Однако эти показатели не отражают состояния АС в отдельных органах и тканях, которые могут существенно различаться. Изложенное позволяет считать, что локализация и характер свободнорадикальной патологии предопределяются главным образом:

  • генотипическими особенностями антиоксидантной системы в разных тканях и органах;
  • природой экзогенного индуктора СР, действующих на протяжении онтогенеза.

Анализируя содержание основных компонентов антиоксидантной системы в различных тканях (эпителиальная, нервная, соединительная), можно выделить различные варианты тканевых (органных) систем ингибирования СРО, в целом совпадающие с их метаболической активностью.

Эритроциты, железистый эпителий

В этих тканях функционирует активный пентозофосфатный цикл и преобладает анаэробный катаболизм, основным источником водорода для антирадикальной цепи антиоксидантной системы и пероксидаз является НАДФ-Н. Чувствительны к индукторам СРО эритроциты как носители кислорода.

[7], [8], [9], [10], [11], [12], [13], [14], [15], [16]

Мышечная и нервная ткань

Пентозофосфатный цикл в этих тканях неактивен; как источник водорода для антирадикальных ингибиторов и для антиоксидантных ферментов преобладает НАД-Н, образующийся в аэробном и анаэробном циклах катаболизма жиров и углеводов. Насыщенность клеток митохондриями обусловливает повышенную опасность «утечки» О2 и возможность повреждения биополимеров.

Гепатоциты, лейкоциты, фибробласты

Наблюдаются сбалансированные пентозофосфатный цикл и ана- и аэробный катаболические пути.

Межклеточное вещество соединительной ткани — плазма крови, волокна и основное вещество сосудистой стенки и костной ткани. Торможение СР в межклеточном веществе обеспечивается главным образом антирадикальными ингибиторами (токоферол, биофлавоноиды, аскорбат), что обусловливает высокую чувствительность стенки сосудов к их недостаточности. В плазме крови помимо них содержится церулоплазмин, обладающий способностью элиминировать супероксиданионрадикал. В хрусталике, в котором возможны фотохимические реакции, помимо антирадикальных ингибиторов, высока активность глутатионредуктазы, глутатионпероксидазы и СОД.

Приведенные органные и тканевые особенности локальных антиоксидантных систем объясняют различия в ранних проявлениях СП при разных видах воздействий, индуцирующих СРО.

Неодинаковая функциональная значимость биоантиоксидантов для разных тканей предопределяет различия в локальных проявлениях их недостаточности. Лишь недостаточность токоферола, универсального липидного АО всех типов клеточных и неклеточных структур, проявляется ранними повреждениями в разных органах. Первоначальные проявления СП, вызываемого химическими прооксидантами, также зависят от природы агента. Данные позволяют считать, что наряду с природой экзогенного фактора в становлении свободнорадикальной патологии существенна роль обусловленных генотипом видовых и тканеспецифических особенностей антиоксидантной системы. В тканях с низким темпом биологического ферментативного окисления, например стенке сосуда, высока роль антирадикальной цепи эрготионеин — аскорбат (биофлавоноиды) — токоферол, которая представлена не синтезируемыми в организме биоантиоксидантами; соответственно хроническая полиантиоксидантная недостаточность вызывает в первую очередь поражение сосуд истой стенки. В других тканях превалирует роль энзимных компонентов антиоксидантной системы — СОД, пероксидаз и др. Так, снижение уровня каталазы в организме характеризуется прогрессирующей патологией пародонта.

Состояние антиоксидантной системы в разных органах и тканях определяется не только генотипом, но и на протяжении онкогенеза фенотипически — гетерохронносгью падения активности в них различных компонентов АС, обусловленное характером индуктора СЮ. Таким образом, в реальных условиях у индивидуума разные комбинации экзо- и эндогенных факторов срыва антиоксидантной системы определяют как общие свободнорадикальные механизмы старения, так и частные пусковые звенья свободнорадикальной патологии, проявляющиеся в определенных органах.

Приведенные результаты оценки активности основных звеньев АС в разных органах и тканях являются основанием для поиска новых лекарственных препаратов-ингибиторов СРО липидов направленного действия для профилактики свободнорадикальной патологии определенной локализации. В связи со специфичностью антиоксидантной системы разных тканей препараты АО должны выполнять недостающие звенья дифференцированно для определенного органа или ткани.

Выявлена различная антиоксидантная система в лимфоцитах и эритроцитах. Gonzalez-Hernandez и соавт. (1994) изучили АОС в лимфоцитах и эритроцитах у 23 здоровых испытуемых. Показано, что в лимфоцитах и эритроцитах активность глутатион-редуктазы составляет 160 и 4,1 ед/ч, глутатион-пероксидазы — 346 и 21 ед/ч, глюкоза — 6-фосфатдегидрогеназы — 146 и 2,6 сд/ч, каталазы — 164 и 60 ед/ч, а супероксиддисмутазы — 4 и 303 мкг/с соответственно.

Полное руководство по антиоксидантам

Антиоксиданты это природный способ обеспечивать ваши клетки адекватной защитой от поражения реактивными формами кислорода (РФК). Пока в вашем организме есть эти важные микроэлементы, он будет в состоянии противостоять старению, вызванному повседневным воздействием загрязняющих веществ. Антиоксиданты играют важную роль в вашем здоровье, так как они могут контролировать быстроту старения, борясь со свободными радикалами

Антиоксиданты, без сомнения, являются важной частью оптимального здоровья. Даже конвенциональные западные врачи на данный момент признают важность получения достаточного количества антиоксидантов из рациона или приема высококачественных добавок.

Антиоксиданты: что это такое, как польза и пищевые источники

  • Что такое антиоксиданты?
  • Польза антиоксидантов для здоровья: как они предотвращают повреждения от свободных радикалов?
  • Различные типы антиоксидантов
  • Антиоксиданты, которые нельзя упустить
  • Пищевые источники антиоксидантов
Читайте также:  Уретрит у мужчин - Петроклиника в Санкт-Петербурге

Но знаете ли вы, как они функционируют в вашем организме и какие их типы вам нужны? Я собрал все основные факты об антиоксидантах, чтобы расширить ваше понимание этих питательных веществ и чтобы вы смогли оценить их значение для поддержания молодости и здоровья.

Что такое антиоксиданты?

Антиоксиданты это класс молекул, которые способны ингибировать окисление другой молекулы. Ваше тело естественным образом распространяет по организму различные питательные вещества из–за их антиоксидантных свойств. Оно также производит антиоксидантные ферменты чтобы контролировать цепную реакцию свободных радикалов.

Некоторые антиоксиданты производятся вашим телом, а некоторые нет. Кроме того, естественная выработка антиоксидантов вашим организмом может снижаться с возрастом.

Антиоксиданты играют важную роль в вашем здоровье, так как они могут контролировать быстроту старения, борясь со свободными радикалами.

Польза антиоксидантов для здоровья: как они предотвращают повреждения от свободных радикалов?

Для того, чтобы осознать, как антиоксиданты действительно приносят пользу вашему здоровью, вы должны сначала узнать об образовании свободных радикалов. Биогеронтолог Дэнам Харман первым обнаружил свободные радикалы в 1954 году, когда он искал объяснение старению.

Они представляют собой тип высокореакционных метаболитов, которые естественным образом вырабатываются в вашем организме в результате нормального обмена веществ и производства энергии.

Это ваш естественный биологический ответ на экологические токсины, такие как сигаретный дым, солнечный свет, химические вещества, космическое и техногенное излучение; они даже являются ключевой особенностью фармацевтических препаратов.

Ваше тело также производит свободные радикалы, когда вы тренируетесь, и когда в вашем теле присутствует воспаление.

В молекулах свободных радикалов отсутствуют один или несколько электронов, и именно они несут ответственность за биологическое окисление. Неполные молекулы агрессивно атакуют другие молекулы, чтобы заменить свои недостающие части. Эти реакции называются «окисление». Окисление называется эффектом «биологического образования ржавчины», вызванным слишком большим количеством кислорода в тканях.

Свободные радикалы крадут электроны из белков в организме, что повреждает ДНК и другие клеточные структуры. Они могут создать эффект «снежного кома»: когда молекулы воруют друг у друга, каждая из них становится новым свободным радикалом, оставляя за собой следы биологической бойни.

Свободные радикалы, как правило, накапливаются в клеточных мембранах (перекисное окисление липидов), что предрасполагает липиды клеток к окислительному повреждению. Когда это происходит, клеточная мембрана становится хрупкой и протекающей, в результате чего клетка разваливается на части и умирает.

Свободные радикалы связаны с более чем 60 различными заболеваниями, в том числе:

  • Рак
  • Болезнь Паркинсона
  • Болезнь Альцгеймера
  • Катаракта
  • Атеросклероз

Если ваш организм не получает адекватной защиты, свободные радикалы могут настолько сильно распространиться, что в результате ваши клетки станут плохо работать. Это может привести к деградации тканей и увеличить риск развития заболеваний.

Вот где в игру вступают антиоксиданты.

Они являются донорами электронов. Они могут разорвать цепную реакцию свободных радикалов, жертвуя им свои электроны, но не превращаясь в них сами.

Антиоксиданты это природный способ обеспечивать ваши клетки адекватной защитой от поражения реактивными формами кислорода (РФК). Пока в вашем организме есть эти важные микроэлементы, он будет в состоянии противостоять старению, вызванному повседневным воздействием загрязняющих веществ.

Если вы не получаете адекватный приток антиоксидантов, чтобы подавить свободные радикалы, вы можете быть подвержены риску окислительного стресса, который приводит к ускоренному повреждению тканей и органов.

Другие важные преимущества антиоксидантов включают:

  • Восстановление поврежденных молекул — Некоторые уникальные типы антиоксидантов могут восстановить поврежденные молекулы, жертвуя свой атом водорода. Это очень важно, когда молекула имеет критическое значение, как в случае с ДНК.
  • Блокировка производства радикалов под воздействием металлов — Некоторые антиоксиданты имеют хелирующий эффект – они могут захватить токсичные металлы, такие как ртуть и мышьяк, которые могут привести к образованию свободных радикалов, и «объять» их настолько сильно, чтобы предотвратить происхождение химических реакций. Водорастворимые хелирующие агенты также могут выводить токсичные металлы из организма через мочу.
  • Стимуляция экспрессии генов и производство эндогенных антиоксидантов — Некоторые антиоксиданты могут стимулировать гены вашего тела и усиливать естественную защиту.
  • Обеспечение «эффекта щита» — Антиоксиданты, такие как флавоноиды, могут выступать в качестве щита, присоединяясь к ДНК для защиты от атак свободных радикалов.
  • Доведение раковых клеток до «самоубийства» — Некоторые антиоксиданты могут обеспечить противораковые химические вещества, которые останавливают рост рака и вынуждают некоторые раковые клетки самоуничтожиться (апоптоз).

Различные типы антиоксидантов

При классификации по растворимости, антиоксиданты можно отнести к растворимым в липидах/жире (гидрофобные) или в воде (гидрофильные). И те и другие необходимы организму, чтобы защитить ваши клетки, внутренняя часть и жидкость между которыми состоит из воды, а сами клеточные мембраны в основном из жира.

Есть ферментативные и неферментативные антиоксиданты.

  • Ферментативные антиоксиданты приносят пользу, расщепляя и выводя свободные радикалы. Они могут вымывать опасные продукты окисления, превращая их в перекись водорода, а затем в воду. Это делается с помощью многоступенчатого процесса, который требует ряда кофакторов следовых металлов, таких как цинк, медь, марганец и железо. Ферментативные антиоксиданты не содержатся в добавках, а производятся в организме.

Основные ферментативные антиоксиданты в организме:

  • Супероксиддисмутаза (СОД) может расщепить супероксид в перекись водорода и кислород, с помощью меди, цинка, марганца и железа. Он содержится практически во всех аэробных клетках и внеклеточной жидкости.
  • Каталаза (САТ) преобразует перекись водорода в воду и кислород, с использованием кофакторов железа и марганца. Она завершает процесс детоксикации, начатый СОД.
  • Глутатионпероксидаза (GSHpx) и глутатионредуктаза это содержащие селен ферменты, которые помогают расщепить перекись водорода и органические пероксиды в спирты. Большая их часть содержится в печени.

Неферментативные антиоксиданты приносят пользу, прерывая цепные реакции свободных радикалов. Некоторые примеры: каротиноиды, витамин C, витамин Е, растительные полифенолы и глутатион (GSH). Большинство антиоксидантов, содержащихся в пищевых добавках и продуктах питания, неферментативные, и они обеспечивают поддержку ферментным антиоксидантам, проводя «первую зачистку» и разоружая свободные радикалы. Это помогает предотвратить истощение запасов ферментативных антиоксидантов.

Читайте также:  Нехватка бифидобактерий в кишечнике - симптомы

Антиоксиданты также могут быть классифицированы с точки зрения размера молекул:

  • Антиоксиданты с маленькими молекулами проводят зачистку реактивных форм кислорода и выводят их посредством химической нейтрализации. Основные игроки в этой категории это витамины С и Е, глутатион, липоевая кислота, каротиноиды, и кофермент Q10.
  • Крупнобелковые антиоксиданты это, как правило, ферментативные энзимы, описанные выше, а также «жертвенные белки», поглощающие РФК и не дающие им атаковать ваши незаменимые белки. Одним из примеров является альбумин, который «берет на себя удар», защищая важные ферменты и ДНК.

Разве не прекрасно то, как природа снабдила нас идеальным сочетанием способов защиты, чтобы уберечься почти от всех возможных биологических непредвиденных ситуаций?

Антиоксиданты, которые нельзя упустить

Как уже упоминалось, очень важно НЕ ограничиваться получением одного или двух типов антиоксидантов. Вам требуется их широкий спектр, чтобы получить оптимальную пользу.

Некоторые антиоксиданты производятся вашим организмом. Это:

Глутатион

Известный как самый мощный антиоксидант в организме, это трипептид, содержащийся в каждой клетке вашего тела.

Его основная функция заключается в защите клеток и митохондрий от окислительного и перекисного повреждения. Он также важен для детоксикации, использования энергии и профилактики заболеваний, которые мы ассоциируем со старением. Глутатион также выводит токсины из ваших клеток и обеспечивает защиту от вредного воздействия облучения, химических веществ и загрязнителей окружающей среды.

Кофермент Q10 (убихинон)

Кофермент Q10 (убихинон) используется в каждой клетке вашего тела и преобразуются в свою редуцированную форму, называемую убихинол, чтобы максимизировать пользу. Кофермент Q10 был предметом тысяч исследований.

Есть антиоксиданты, которые организм не может произвести, и их нужно получать из продуктов, богатых антиоксидантами или мощных добавок. Это:

Ресвератрол

Содержится в некоторых фруктах, таких как виноград, овощи, какао и красное вино, он может пересечь гематоэнцефалический барьер, обеспечивая защиту вашего мозга и нервной системы.

Каротиноиды

Каротиноиды представляют собой класс естественно встречающихся пигментов, которые обладают мощными антиоксидантными свойствами.

Это соединения, которые придают продуктам их яркие расцветки. Существует более 700 природных каротиноидов, и прямо сейчас в вашей крови скорее всего циркулирует, по крайней мере, 10 их видов.Каротиноиды можно разделить на две группы:

Каротины

Каротины не содержат атомов кислорода. Некоторые примеры: ликопин (в красных томатах) и бета-каротин (в оранжевой моркови), который в организме превращается в витамин А.

Ксантофилы

Ксантофилы содержат атомы кислорода, и примеры включают лютеин, кантаксантин (золотой цвет в лисичках), зеаксантин и астаксантин. Зеаксантин является наиболее распространенными каротиноидом из естественно существующих в природе и встречается в перцах, киви, кукурузе, винограде, сквоше и апельсинах.

Астаксантин

Хотя технически это каротиноид, я считаю, что этот антиоксидант заслуживает особого упоминания благодаря превосходному содержанию питательных веществ. Это морской каротиноид, который вырабатывают микроводоросли Гематококкус Плювиалис, когда они сохнут в отсутствие воды, чтобы защититься от ультрафиолетового излучения.

Витамин C

Витамин C, также называемый «дедушкой» традиционных антиоксидантов, имеет широкий спектр удивительных преимуществ для здоровья. Как антиоксидант, он может помочь:

— Бороться с окислением, действуя в качестве основного донора электронов

— Поддерживать оптимальный поток электронов в клетках

— Защитить белки, липиды и другие жизненно важные молекулярные элементы в вашем теле

Витамин Е

Природный витамин Е это семейство из восьми различных соединений: четырех токоферолов и четырех токотриенолов. Вы можете получить все эти соединения из сбалансированной диеты, состоящей из полезных продуктов. Однако при приеме синтетического витамина Е вы получите только одно из восьми соединений.

Пищевые источники антиоксидантов

Я считаю, что в вопросе получения питательных веществ ваша диета, а не добавки, должна быть основным источником.

Если вы потребляете сбалансированную, непереработанную диету, которая полна высококачественных сырых органических продуктов, особенно фруктов и овощей, ваш организм будет получать питательные вещества и антиоксиданты, необходимые ему для достижения или поддержания оптимального здоровья.

Какие наиболее богатые антиоксидантами продукты обязательно иметь в рационе? Вот мои основные рекомендации:

Свежие органические овощи

Большинство овощей, которые вы едите, особенно зеленые листовые, наполнены мощными фитохимикатами, то есть растительными соединениями, которые действуют как антиоксиданты. Фитохимикаты могут уменьшить воспаление и устранить канцерогены.

Проростки также являются мощными источниками антиоксидантов, минералов, витаминов и ферментов, которые способствуют оптимальному здоровью.

Фрукты

Свежие ягоды, такие как черника, ежевика, клюква и малина это лучшие источники антиоксидантов среди фруктов, так как они содержат мощные фитохимикаты, которые непосредственно ингибируют связывание ДНК с некоторыми канцерогенными веществами.

Орехи

Пекан, грецкие орехи и фундук это отличные антиоксидантные продукты, которые могут укрепить здоровье сердца и улучшить общее состояние. Ищите органические сырые орехи, а не облученные или пастеризованные. Я не рекомендую потреблять арахис, так как он, как правило, перегружен пестицидами и может быть заражен канцерогенной плесенью под названием афлатоксин.

Травы и специи

Помимо того, что они являются богатым источником антиоксидантов, они могут иметь потенциальные противораковые преимущества. Травы и специи в основном отличаются источником, так как травы, как правило, происходят из листьев растения, а специи получают из коры, ствола и семян. И те и другие на протяжении тысяч лет использовались для придания вкуса блюдам и лечения болезней.

Органический зеленый чай

Этот богатый антиоксидантами напиток содержит галлат эпигаллокатехина (EGCG), катехин полифенол и один из самых мощных антиоксидантов, известных на данный момент. EGCG приносит пользу, снижая риск сердечного приступа и инсульта, глаукомы, высокого уровня холестерина и многого другого.

Исследования также показали, что он может улучшить эффективность упражнений, увеличить окисление жиров, и даже помогает предотвратить ожирение из-за регуляторного влияния на липидный обмен.опубликовано econet.ru.

P.S. И помните, всего лишь изменяя свое сознание — мы вместе изменяем мир! © econet

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Ссылка на основную публикацию
Стоматологическая клиника адреса, телефон, отзывы о врачах, Москва, м
Стоматологическая клиника «Зуб.ру» (филиал на ул. Новая Басманная) Адрес 107078, Москва, ул. Новая Басманная, д. 10, стр. 1 , Басманный...
Стафилококковые интоксикации (токсикозы)
Как лечить стафилококк? 12 лучших препаратов для лечения стафилококка Человеческий организм может служить домом для тысяч микробов и бактерий, причем,...
Ствол мозга — Строение и функции головного мозга, описание
Функции мозгового ствола Средний мозг располагается между промежуточным и задним мозгом. Задний мозг состоит из варолиева моста, продолговатого мозга и...
Стоматологическая клиника Парнас Дент ВКонтакте
Стоматология у метро Парнас Лучшая стоматология — рейтинг, адреса и телефоны проспект Энгельса, 143к1, метро Парнас • 8 (812) 245-30-03...
Adblock detector