Фармакокинетика и фармакодинамика

Распределение

Объем распределения

Этот второй важнейший фармакокинетический параметр характеризует распределение препарата в организме. Объем распределения (Vр) равен отношению общего содержания вещества в организме (ОСО) к его концентрации (С) в плазме крови или цельной крови. Объем распределения часто не соответствует никакому реальному объему. Этот объем, необходимый для равномерного распределения вещества в концентрации, равной концентрации этого вещества в плазме крови или цельной крови.

Vр= ОСО / С . (1.7)

Объем распределения отражает долю вещества, содержащегося во внесосудистом пространстве. У человека массой тела 70 кг объем плазмы крови составляет 3 л , ОЦК — около 5,5 л , межклеточной жидкости — 12 л , общее содержание воды в организме — примерно 42 л . Однако объем распределения многих лекарственных веществ гораздо больше этих величин. Например, если у человека массой тела 70 кг в организме содержится 500 мкг дигоксина, его концентрация в плазме крови составляет 0,75 нг/мл. Разделив общее содержание дигоксина в организме на его концентрацию в плазме крови, получим, что объем распределения дигоксина равен 650 л . Это более чем в 10 раз превышает общее содержание воды в организме. Дело в том, что дигоксин распределяется преимущественно в миокарде, скелетных мышцах и жировой ткани, так что его содержание в плазме крови невелико. Объем распределения лекарственных средств, активно связывающихся с белками плазмы крови (но не с компонентами тканей), примерно соответствуют объему плазмы крови. Вместе с тем некоторые лекарственные средства содержатся в плазме крови преимущественно в связанной с альбумином форме, но имеют большой объем распределения за счет депонирования в других тканях.

Период полувыведения

Период полувыведения (Т ½ ) — это время, за которое концентрация вещества в сыворотке крови (или его общее содержание в организме) снижается вдвое. В рамках однокамерной модели определить Т ½ очень просто. Полученное значение используют затем для расчета дозы. Однако для многих лекарственных средств приходится использовать многокамерную модель, поскольку динамика их концентрации в сыворотке крови описывается несколькими экспоненциальными функциями. В таких случаях рассчитывают несколько значений Т ½ .

В настоящее время общепризнано, что Т ½ зависит от клиренса и объема распределения вещества. В стационарном состоянии зависимость между Т ½ , клиренсом и объемом распределения вещества приблизительно описывается следующим уравнением:

Т½ ≈ 0,693 × Vр / Cl. (1.8)

Клиренс характеризует способность организма элиминировать вещество, поэтому при снижении этого показателя вследствие какого-либо заболевания Т ½ увеличивается. Но это справедливо лишь в том случае, если не меняется объем распределения вещества. Например, с возрастом Т ½ диазепама увеличивается, но не за счет снижения клиренса, а вследствие увеличения объема распределения (Klotzet et al., 1975). На клиренс и объем распределения влияет степень связывания вещества с белками плазмы крови и тканей, так что прогнозировать изменение Т ½ при том или ином патологическом состоянии не всегда возможно.

По Т ½ не всегда можно судить об изменении элиминации препарата, зато этот показатель позволяет рассчитать время достижения стационарного состояния (в начале лечения, а также при изменении дозы или частоты введения). Концентрация лекарственного вещества в сыворотке крови, составляющая примерно 94% средней стационарной, достигается за время, равное 4 × Т ½ . Кроме того, с помощью Т ½ можно оценить время, необходимое для полной элиминации вещества из организма, и рассчитать интервал между введениями.

А.П. Викторов «Клиническая фармакология»

Распределение лекарственных препаратов по тканям

, PharmD, MAS, BCPS-ID, FIDSA, FCCP, FCSHP, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego

Читайте также:  При миоме матки (сбор трав в фильтр-пакетах) купить

После того как лекарственное средство попадает в системный кровоток, оно распределяется в тканях организма. Распределение обычно происходит неравномерно из-за различий в интенсивности кровоснабжения, связывания с тканями (например, с различным содержанием жира), местного рН и проницаемости клеточных мембран.

Степень проникновения лекарственного средства в ткань зависит от скорости кровотока, массы ткани и характера распределения вещества между кровью и тканью. Равновесное распределение (когда скорости проникновения и выхода из ткани совпадают) достигается быстрее в областях с богатой васкуляризацией, если диффузия через клеточную мембрану не является скорость-лимитирующим фактором. После достижения равновесия концентрация лекарственного средства в ткани и внеклеточных жидкостях пропорциональна концентрации в плазме крови. Метаболизм и элиминация происходят одновременно с распределением, делая процесс динамичным и сложным.

После того, как лекарственное средство проникло в ткани, его распределение в интерстициальной жидкости определяется, в первую очередь, перфузией. Для мало перфузируемых тканей (например, мышечной, жировой) характерно очень медленное распределение, особенно если ткань обладает высоким сродством к лекарственному веществу.

Объем распределения

Кажущийся объем распределения – это гипотетический объем жидкости, в котором могло бы распределиться общее количество введенного лекарственного средства для создания концентрации, соответствующей таковой в плазме крови. Например, если вводится 1 000 мг лекарственного средства, а концентрация в плазме крови составляет 10 мг/л, то 1 000 мг распределяется в 100 л (доза/объем = концентрация; 1 000 мг/x л = 10 мг/л; отсюда: x = 1 000 мг/10мг/л = 100 л).

Объем распределения не имеет никакого отношения к объему тела или содержанию в нем жидкости, а, скорее, зависит от характера распределения лекарственного вещества в организме. В случае препаратов, интенсивно связывающихся с тканями, очень малая их доля остается в системе кровообращения. Следовательно, концентрация в плазме крови будет низкой, а объем распределения – высоким. Лекарственные средства, которые преимущественно остаются в кровотоке, обычно имеют низкий объем распределения.

Объем распределения служит эталоном для плазменной концентрации, ожидаемой для введенной дозы, но дает мало информации о конкретной схеме распределения. Каждый препарат по-своему распределяется в организме. Одни препараты распределяются в основном в жировой ткани, другие – остаются во внеклеточной жидкости, а некоторые в значительной степени связаны с конкретными тканями.

Лекарственные препараты, являющиеся слабыми кислотами (например, варфарин, аспирин), зачастую хорошо связываются с белками плазмы и поэтому имеют невысокий кажущийся объем распределения. Многие основания (например, амфетамин, петидин), напротив, в большой степени захватываются тканями и, таким образом, имеют кажущийся объем распределения больше, чем объем всего организма.

Связывание

Степень распределения ЛС в ткани зависит от его относительного связывания с белками плазмы крови и тканями. В кровотоке лекарственные средства транспортируются частично как свободная (несвязанная) фракция, а частично – как связанная фракция (например, с белками плазмы крови или клетками крови). Из множества белков плазмы, которые могут взаимодействовать с препаратами, наиболее важными являются альбумин, альфа-1 кислый гликопротеин и липопротеины. ЛС-слабые кислоты обычно более интенсивно связываются с альбумином; основания, напротив, – с альфа-1-кислым гликопротеином и/или липопротеинами.

Только несвязанное лекарственное средство способно к пассивной диффузии в экстраваскулярные пространства или ткани, где происходит его фармакологическое действие. Поэтому концентрация несвязанного лекарственного средства в системном кровотоке обычно определяет концентрацию его в месте реализации эффекта и, таким образом, выраженность последнего.

При высоких концентрациях количество связанного лекарственного средства достигает верхнего предела, определяемого количеством доступных участков связывания. Их насыщение – основа эффекта вытеснения при взаимодействии лекарственных средств ( Взаимодействия лекарственного вещества с рецептором).

Читайте также:  Ожог кипятком — первая помощь и лечение на дому ВКонтакте

Лекарственные препараты способны связываться с различными веществами помимо белков. Связывание обычно происходит, когда лекарственное средство взаимодействует с макромолекулой в водной среде, но может также произойти, когда оно проникает в жировую ткань организма. Поскольку она слабо перфузируется, время достижения равновесного состояния обычно длительное, особенно если препарат является высоколипофильным.

Накопление лекарственных средств в тканях или компартментах организма может быть причиной пролонгирования их эффекта, т.к. ткани высвобождают накопленный препарат по мере того, как снижается концентрация его в плазме крови. Например, тиопентал обладает высокой липофильностью, быстро проникает в головной мозг после однократного внутривенного введения и характеризуется развитием выраженного и быстрого анестезирующего эффекта; затем его действие прекращается в течение нескольких минут по мере того, как он перераспределяется в медленно перфузируемую жировую ткань. Затем тиопентал медленно высвобождается из запасов жира, поддерживая субанестетическую концентрацию в плазме крови. При повторном введении концентрация может стать значительной, приводя к тому, что препарат в большом количестве накопится в жировой ткани. Таким образом, этот процесс сначала сокращает время действия лекарственного средства, а затем продлевает его.

Некоторые лекарственные средства накапливаются в клетках вследствие связывания с белками, фосфолипидами или нуклеиновыми кислотами. Например, концентрация хлорохина в лейкоцитах и гепатоцитах может быть в тысячу раз выше, чем в плазме крови. Лекарственное вещество в клетках находится в равновесии с его концентрацией в плазме крови и переходит туда по мере элиминации препарата из организма.

Гематоэнцефалический барьер

Лекарственные средства проникают в ЦНС по капиллярам мозга и через спинномозговую жидкость. Хотя головной мозг получает примерно 1/6 сердечного выброса, распределение препаратов в ткань головного мозга ограниченно, поскольку проницаемость головного мозга отличается от других тканей. Хотя некоторые жирорастворимые лекарственные средства (например, тиопентал) легко попадают в головной мозг, проникновение полярных соединений затруднено. Причиной этого является гематоэнцефалический барьер, который состоит из эндотелия капилляров головного мозга и астроцитарных отростков. Эндотелиальные клетки капилляров головного мозга, которые более тесно соединены друг с другом, чем клетки других капилляров, замедляют диффузию водорастворимых лекарственных средств. Астроцитарная оболочка состоит из слоя глиальных клеток соединительной ткани (астроцитов), примыкающего к базальной мембране эндотелия капилляров. С возрастом защитная функция гематоэнцефалического барьера становится менее эффективной, что приводит к повышению проникновения различных веществ в головной мозг.

Лекарственные вещества могут попадать в спинномозговую жидкость желудочков через хориоидальное сплетение, затем пассивно диффундируя в ткань головного мозга из ликвора. Кроме того, в хориоидальном сплетении органические кислоты (например, пенициллин) активно транспортируются из спинномозговой жидкости в кровь.

Скорость проникновения лекарственного средства в спинномозговую жидкость, как и в случае других тканей, определяется в основном мерой связывания с белками, степенью ионизации и коэффициентом распределения лекарственного средства в жирах и воде. Проникновение в головной мозг замедлено для препаратов, в значительной степени связанных с белками, и практически отсутствует для ионизированных форм слабых кислот и оснований. Поскольку ЦНС хорошо кровоснабжается, скорость распределения лекарственного средства определяется, прежде всего, проницаемостью клеточных мембран.

Объем распределения лекарственного препарата

Если лекарственное средство предназначено для того, чтобы вызвать системный эффект или реакцию со стороны какого-либо органа, на который невозможно воздействовать непосредственно, оно должно попасть в системный кровоток и другие «камеры» организма. Большинство препаратов широко распределяется в организме, так как некоторые из них растворяются в плазме, другие связываются с ее белками, третьи — с тканевыми структурами.

Иногда они распределяются неравномерно, так как избирательно связываются с белками плазмы или тканей или накапливаются в определенных органах. Безусловно, местное накопление лекарственного средства влияет на его действие. Например, если оно проникает через гематоэнцефалический барьер, то способно действовать на мозг, а степень (количество) и сила (прочность) связывания с белками или тканями влияют на время, в течение которого препарат остается в организме, и, следовательно, на длительность его действия.

Читайте также:  Можно ли кончать внутрь во время беременности

Объем распределения лекарственного вещества — это кажущийся объем, в котором оно распределяется (или могло бы распределиться) при условии, что концентрация его в организме была бы равна его концентрации в плазме, т.е. если бы весь организм представлял собой как бы единую камеру.

Распределение лекарственного вещества из плазмы в другие жидкости и ткани организма имеет свои особенности для каждого препарата, попадающего в кровоток, и широко варьирует в зависимости от лекарственного средства. Точную его концентрацию в разных тканях и жидкостях организма можно определить путем биопсии тканей и забора жидких сред, что по понятным причинам невозможно произвести у человека. Обычно концентрацию препарата определяют в плазме.

Ее сопоставляют с введенной дозой, и на основании полученного результата делается вывод, остается ли препарат в системе кровообращения или переходит из плазмы в ткани. Если лекарственное вещество остается преимущественно в плазме, его объем распределения небольшой; если же оно распределяется главным образом в других тканях, его объем распределения будет большим.

Подобная информация важна для клинициста, в частности, при передозировке препарата. Удаление лекарственного средства путем гемодиализа эффективно только в том случае, если большая его часть находится в плазме (салицилаты, имеющие небольшой объем распределения). В то же время при передозировке петидина гемодиализ неэффективен из-за очень большого объема его распределения. Однако это общие положения, а для практических целей необходимо определять его количественно.

Для определения объема распределения препарата в организме используется принцип оценки объема распределения красителя в контейнере, заполненном жидкостью. Масса добавленного в контейнер красителя, разделенная на его концентрацию после смешивания, дает представление об объеме его распределения. Аналогично можно определить объем распределения препарата в организме после одноразового внутривенного болюсного введения его дозы, разделив эту дозу на его концентрацию в плазме.

На основании этих расчетов значение объема распределения по существу редко соответствует физиологическому объему внеклеточной жидкости или общему объему жидкости в организме, так как измеренный объем представляет собой лишь кажущийся объем распределения, определяемый но введенной дозе препарата и получаемой концентрации его в плазме; при этом предполагают, что объем плазмы соответствует всему объему распределения. В связи с этим часто пользуются понятием кажущийся объем распределения.

В действительности для некоторых препаратов, в значительной степени связывающихся в тканях, кажущийся объем распределения, рассчитываемый на основании низкой концентрации препарата в плазме, во много раз превосходит общий объем организма.

Объем распределения — это объем жидкости, в котором кажется распределенным лекарственное вещество при его концентрации, равной таковой в плазме.

В таблице приведены кажущиеся объемы распределения. Курсивом выделены названия препаратов, использованных для параллельного определения физиологического пространства распределения.

Избирательное распределение в организме происходит благодаря особому сродству лекарственного вещества к определенным компонентам организма. Многие препараты связываются с белками плазмы: например, фенотиазины и хлорохин — с меланинсодержащими тканями, в том числе и в сетчатке глаза, что объясняет развитие ретинопатии при приеме этих препаратов. Избирательное накопление лекарственных веществ в определенных тканях (например, йода в щитовидной железе) может происходить с участием специальных транспортных систем.

Ссылка на основную публикацию
Фарингит при беременности как лечить и влияние на плод
Чем опасна ангина при беременности и как ее лечить? Любая ангина характеризуется острым воспалительным процессом в горле. Неправильное ее лечение...
Устойчивость вируса ВИЧ во внешней среде
Сколько вирус гепатита В живет в окружающей среде вне организма? На то, сколько живёт вирус гепатита В вне организма, могут...
Устойчивость микробов к антибиотикам – глобальная проблема человечества — ВГНКИ
Что значит устойчивость к антибиотикам Результаты исследования SOAR продемонстрировали высокий уровень чувствительности основных бактериальных патогенов, вызывающих инфекции респираторного тракта, к...
Фарингит признаки, симптомы, лечение — МедКом
J31.2 Хронический фарингит Фарингитом чаще болеют взрослые, а тонзиллитом — дети. Генетика и образ жизни значения не имеют. Фарингит и...
Adblock detector