Что такое свободные радикалы и как с ними бороться

СВОБОДНЫЕ РАДИКАЛЫ И АНТИОКСИДАНТЫ В ОРГАНИЗМЕ: ЧТО НУЖНО ЗНАТЬ

«Представьте, что вы вынимаете чудесное красное яблоко из вазы на столе. Вы режете его тонкими ломтиками.

Затем звонит телефон, потом приносят почту…

Два часа спустя вы возвращаетесь к своему яблоку. Оставленные на тарелке ломтики потемнели. Они подверглись атаке и испорчены молекулами кислорода воздуха, теми же молекулами, что разъедают металл автомобилей.

Так как именно кислород совершает это «грязное дело», мы говорим, что яблоко и автомобиль окислены. Молекулы, выполняющие функцию окисления, были названы оксидантами.

Давайте представим, что вы оставили на теплой кухне пачку сливочного масла на неделю другую. Когда вы начинаете его использовать, то, вероятно, чувствуете по запаху или на вкус, что масло прогоркло. Это другой случай работы оксидантов.

Медицинский термин для масла или жира — липид. Ученые называют процесс превращения свежего жира в прогорклый «окислением липидов в перекисное соединение».

К сожалению, каждая клетка тела содержит жир, который геронтолог д-р Р. Велфорд именует «собственным маслом организма», которое в какое-то время тоже становится прогорклым.

Результат может быть «доброкачественным» — всего лишь увядшая кожа, плохо, когда он летальный – раковое заболевание.

Степень разрушения организма зависит от многих факторов, включая продолжительность реакции и места, где действовал «противник».

Она также зависит от генетической предрасположенности, типа клеточного питания, состояния здоровья и уровня эмоционального стресса личности.

Когда нарушение происходит в кровеносных сосудах, оно может вызвать заболевание капилляров.

Когда оно затрагивает ДНК, в генетической информации, заложенной внутри каждого клеточного ядра, могут возникнуть дефекты или рак.

Когда повреждаются липиды внутри хрусталика глаза, образуется катаракта.

Таким образом, кислород заработал титул «универсального оксиданта», и кажется, список заболеваний и состояний, вызываемых его действием становится с каждым днем все длиннее.

Обвиняются свободные радикалы

Оксиданты часто являются свободными радикалами. Свободными от чего? Химики называют радикалами мельчайшие частицы, которые поддерживают свою уникальность. В организме свободный радикал «свободен» потому, что он теряет электрон.

Может быть, вы видели изображение атома с чем-то вращающимся вокруг ядра? Это что-то – электрон.

Молекулы стабильны, когда они имеют равные пары электронов (спаренные электроны). Когда молекула теряет электрон, она превращается в свободный радикал и усердно и неразборчиво «ворует» недостающий электрон.

К сожалению, жертва кражи тоже становится свободным радикалом и немедленно начинает поиск своего электрона для очередной кражи, создавая другой свободный радикал.

Образуется целый каскад электронных краж, он и приводит к разрушению тканей организма.

Кроме того, эта разрушительная цепная реакция создает новые соединения, которые также вносят беспорядок.

Поскольку лучшее место для вора-карманника — в толпе, свободные радикалы также предпочитают области, где скапливается большое число электронов.

Свободные радикалы особенно неравнодушны к полиненасыщенным жирным кислотам, которые составляют около половины жирового содержания мембраны, окружающей каждую клетку в вашем теле.

Где рождаются свободные радикалы

Свободные радикалы рождаются в процессе клеточного метаболизма, который заключается в обычном ежедневном устранении различных дефектов, приеме питательных веществ, выработке энергии, воспроизводстве, удалении отходов, остающихся после выполнения всех других функций.

Свободные радикалы образуются также при употреблении спиртов, консервированного мяса; они появляются в ходе искусственного крашения, при переработке нефтепродуктов;

они попадают в организм вместе с вдыхаемыми парами, гербицидами, асбестовой пылью, смогом, ультрафиолетовой радиацией, рентгеновским излучением, а также при химиотерапии, курении, эмоциональном стрессе, при высоких физических нагрузках и травмах, в составе некоторых лекарств, а также в ряде других случаев.

Обычно организм находит собственные пути нейтрализации свободных радикалов. Несчастье происходит тогда, когда свободных радикалов в нем накапливается слишком много и организм уже не сможет их нейтрализовать.

Организм защищается сам

Когда в живых тканях происходит окисление, организм отвечает выработкой веществ, которые окружают оксиданты и контролируют их уничтожение. Эти вещества называются антиоксидантами.

Но если они существуют, спросите вы, почему же люди все-таки болеют? Почему нарушение не всегда предотвращается бдительностью этих внутренних защитников – антиоксидантов?

Давайте представим дошкольное учреждение, где на 30 трех- и четырехлетних детей всего один учитель! Он находится на своем месте в положенное время.

Но стоит только детям начать активно двигаться, как бедная леди тут же оказывается задавленной превосходящей численностью и энергией. Ей постоянно необходим рядом персонал старших помощников.

Та же ситуация складывается в организме в борьбе против окисления.

«Борцов» против разрушающего действия свободных радикалов объединяют в систему антиоксидантной защиты. Она борется за нас на четырех уровнях:

— во-первых, сдерживает образование оксидантов: кислород направляется только в те области, где он приносит пользу, и не пропускается в области, где он может напроказничать; она также останавливает инициирование окисления металлами, подобными железу ( в образование свободных радикалов включаются также медь, кадмий, марганец, свинец);

— во-вторых, система защиты перехватывает оксиданты-инициаторы образования радикалов и прерывает цепную реакцию воспроизводства других многочисленных оксидантов;

— в-третьих, устраняет нарушения, вызванные оксидантами, которые не удалось перехватить;

— в-четвертых, элиминирует и заменяет разрушенные молекулы, а также самоочищается, удаляя нежелательные вещества, выделяемые в процессе их жизнедеятельности.

Читайте также:  Онлайн-тесты на Рентгенология - все вопросы (30129)

Термин «система защиты антиоксидантов» подразумевает тесную взаимозависимость, усилие команды защитников. В состав игроков команды входят бактерии, энзимы и питательные вещества.

Бактерии. Кишечные бактерии сами по себе нельзя считать антиоксидантами. Но они разлагают биохимические вещества, которые могут превращаться в оксиданты. Таким образом, бактерии являются нашей первой защитной полосой.

Энзимы. В момент образования оксидантов появляется вторая защитная полоса. Она составлена из энзимов – белковых молекул, которые разрушают некоторые из наиболее опасных оксидантов, прежде чем те начнут цепную реакцию.

Энзимы, как объясняет диетолог Э.Сомер, «подобны оборудованию линии по производству автомобилей; они ускоряют сборочный процесс, не становясь при этом частью машины».

Хотя два вещества при достаточном количестве времени могут, очевидно, столкнуться друг с другом и прореагировать, энзимы придают уверенности, что это произойдет и произойдет быстро.

Например, «химическая реакция, которой могут потребоваться часы или годы, чтобы осуществиться случайно, в присутствии энзима будет происходить во много (тысячи раз!) быстрее».

Хорошим примером энзима антиоксиданта является супероксиддисмутаза. Пероксиддисмутаза (ПОД) может останавливать цепную реакцию в момент ее прохождения. Поэтому ПОД называется прерывающим цепь антиоксидантом.

Он заставляет оксидант, названный пероксидом, мутировать или вступать в реакцию самому с собой, в процессе которой он распадается на отдельные, менее токсичные части.

В частности, ПОД заставляет пероксид распадаться (дисмутировать) на перекись водорода (являющуюся более слабым оксидантом) и кислород.

Глутатионпероксидаза предупреждает образование свободных радикалов.

Перекись водорода, оставшись одна, будет, очевидно, реагировать сама с собой и распадаться на воду и кислород, но эта спонтанная трансформация происходит медленнее по сравнению с тем изменением, которое влечет присутствие глютатионпероксидазы.

Наш организм производит миллионы энзимов, и каждый из этих энзимов отвечает только за одну химическую реакцию. Однако он может выполнять эту реакцию не один. Многие энзимы имеют помощников, называемых коэнзимами, или кофакторами. Многие кофакторы являются питательными веществами.

Антиоксиданты-кофакторы включают селен, медь, рибофлавин, глютатион, коэнзим Q10, цистеин, марганец, цинк и биофлавоноиды. Все эти питательные элементы можно найти в рационе, богатом фруктами, овощами и цельными зернами. Все они помогают антиоксидантам-энзимам, которые защищают наше здоровье.

Например, селен является коэнзимом глютатионпероксидазы. На практике это означает, что если ваш рацион сильно обеднен селеном, вы несможете получить антиоксиданта глютатионпероксидазы с необходимой активностью, что принесет вам ощутимый вред.

Когда в организме мало марганца, цинка и меди, создается недостаточно ПОД для защиты от цепных реакций свободных радикалов, снова происходит разрушение.

Энзимы служат второй полосой в нашей системе защиты антиоксидантов, сохраняя уже существующие оксиданты в достаточно низких концентрациях, чтобы при выполнении возложенной на них работы они не смогли обратить ее в необузданную, неконтролируемую и разрушительную цепную реакцию.

Окисление свободными радикалами

Современные условия жизни подвергают организм человека сильным окислительным реакциям, которые приводят к преждевременному старению, нарушению биологических процессов и возникновению различных заболеваний. Окисление клеток организма происходит из-за образования свободных радикалов или другими словами активных форм кислорода (АФК).

Учеными доказано, что из-за чрезмерного окисления организма, вызванного свободными радикалами, возникает более 80 видов заболеваний, таких как онкологические, сердечно-сосудистые, метаболические, дегенеративные, воспалительные и другие.

Организм человека – это сложнейшее переплетение органических молекул. У всех молекул на внешней оболочке расположены парные электроны. В процессе метаболизма в нашем организме образуются свободные радикалы, которые лишились парного электрона и в поиске утраченного электрона окисляют каждую клетку, с которыми имеют контакт. В результате, происходят различные нарушения процессов жизнедеятельности. В итоге наш организм устает, ослабевает, становится чувствителен к инфекциям, склонен к воспалению и быстрее стареет.

Свободные радикалы – это активные молекулы кислорода, лишившиеся парного электрона, которые в процессе поиска стараются отобрать недостающий электрон у клеток и тканей.

В России их научное название — “АФК” («активные формы кислорода»). В Европе биохимики дали им название — ROS (“reactive oxygen species” что в переводе трактует тот же смысл). Свободные радикалы стремятся присоединить недостающий электрон, проявляя большую химическую активность, при этом все соединения, с которыми они контактируют, окисляются.

Главные их объекты – соединения, имеющие двойные связки в частицах (ДНК, липиды, белки, нуклеиновые кислоты, аминокислоты, углеводы). Стоит отметить, что этот обмен электронами происходит не один раз — это реакция, приводящая к формированию новых радикалов. В результате чего, со временем организм преждевременно стареет, появляются болезни, такие как: Рак, сердечно – сосудистые заболевания, проблемы с опорно – двигательным аппаратом, метаболическим и многое другое.

▼ разъяснение понятия «свободные радикалы ▼

Причины возникновения свободных радикалов связаны с естественными физиологическими процессами человека, а также с окружающей средой. Образование радикалов зависит от образа и качества жизни, окружающей среды и вредных привычек и даже от вдыхаемого кислорода.

! Доказано, что около 2-4% вдыхаемого кислорода трансформируются в активные формы (свободный радикал), которые имеют сильное окислительное воздействие на биологические молекулы.

В воздухе всего 20% кислорода, который необходим живому организму для осуществления многих биохимических реакций. Основной функцией кислорода является окисление в окислительно-восстановительных реакциях. Жизнь поддерживается в нашем теле метаболизмом, в котором кислород, который мы вдыхаем через лёгкие, сжигает принимаемую пищу с получением энергии и уничтожает микробы. Но мало кому известно, что 2-4% вдыхаемого кислорода преобразуется в активную форму кислорода (АФК).

Для примера, Человек делает около 20 вдохов в минуту и при каждом из них в организме вырабатывается около 40 см3 активного кислорода. За сутки количество радикалов составляет до 58 000 см3. Учитывая этот постоянный процесс выработки огромного количества активного кислорода, не стоит удивляться, что люди постоянно болеют.

Читайте также:  Через сколько пройдет синяк под глазом

По мимо образования АФК из кислорода, который мы вдыхаем, возникновение огромного количества свободных радикалов зависит от образа жизни и внешней среды человека.

Все мы знаем, что в мегаполисах очень загрязненная экология, особенно где находятся промышленные заводы и предприятия. Вредные привычки, такие как курение и постоянное употребления спиртных напитков, также являются причиной возникновения радикалов. Нередко к появлению АФК может привести наличие хронического заболевания.

Необходимо стараться как можно меньше нервничать, так как стрессы тоже могут ввести в зону риска. Нужно согласиться с тем, что потребление в пищу консервантов, полуфабрикатов и животных жиров, которые находятся у нас в приоритете перед натуральными продуктами, хлорированной воды и газированных напитков, приводят к увеличенным окислительным процессам.

Поэтому очень важно для сохранения здоровья, подавлять (нейтрализовать) ежедневно образующийся в организме «активный кислород» при помощи антиоксидантов.

▼ что влияет на образование свободных радикалов ▼

Виды свободных радикалов

Существуют различные виды свободных радикалов. Некоторые радикалы необходимы для сигнализации и регулирования синтеза биологических соединений, но существуют очень агрессивные и опасные радикалы, которые приводят организм к окислительному стрессу.

! Самые реактивные и вредные формы свободных радикалов считаются Гидроксильный радикал (ОН•), Супероксидный радикал (О2-) и Пероксинитрит (ONOO−), которые образуются от вдыхаемого кислорода. Именно они являются главными причинами оксидативного стресса.

Свободные радикалы имеют различное значение для организма человека, некоторые виды выступают сигнализаторами и маркерами для антиоксидантных ферментов, другие необходимы для регулирования синтеза биологических соединений, третьи важны для борьбы с микроорганизмами, но есть виды, которые наносят огромный вред биологическим соединениям.

Гидроксильные радикалы (ОН•) принято считать основной причиной более 50% самых сильных повреждений в организме. Критическими объектами повреждения в клетках от окисления ОН∙ считаются: нуклеиновые кислоты и мембранные белки.

Второй по агрессивности считается Пероксинитрит (ONOO−), он окисляет белки, что приводит к инактивации антиоксидантных ферментов, например, супероксиддисмутазы (СОД). Кроме того, ONOO− запускает процессы окисления липидов в мембранах, а также способен вызывать повреждения ДНК. Дополнительным фактором, усиливающим цитотоксическое действие пероксинитрита, является образование из него гидроксильного радикала (ОН•).

Основными типами повреждений биологических молекул являются: отрыв атома водорода (так повреждается лецитин — основной компонент биологических мембран и сахара в составе нуклеозидов ДНК); присоединение к молекулам по двойным связям (взаимодействие с пуринами и пиримидинами ДНК и РНК, в том числе с образованием вторичных радикалов); перенос электронов.

Являясь сильным окислителем, гидроксильные радикалы разрывают любую Н-связь, вызывают повреждения белков и нуклеиновых кислот. Цитотоксическое и канцерогенное действие ионизирующих излучений на живые организмы напрямую связывают с генерацией OH• в процессе радиолиза воды.

Этот процесс протекает на протяжении всей жизни, что со временем приводит к окислительному стрессу нашего организма. , а это означает:

  • Нарушение обмена веществ
  • Ослабление иммунитета
  • Риск раковых заболеваний
  • Преждевременное старение
  • Обострение хронических заболеваний
  • Сердечно-сосудистые патологии
  • И другие недуги

Важно! Чтобы сохранить здоровье, необходимо подавлять (нейтрализовать) постоянно образующийся в организме «активный кислород» при помощи антиоксидантов.

▼ Какие свободные радикалы самые опасные ▼

Какие заболевания возникают от свободных радикалов

Учитывая современные реалии, где качество жизни, образ жизни, экология и другие факторы не лучшего качества, то с уверенностью можно сказать, что окислительные процессы преобладают на восстановительными, в результате организм перегружен и не справляется с нейтрализацией свободных радикалов. В настоящее время активные формы кислорода являются причиной более 80 видов заболеваний и патологий. Такое сильное влияние на различные заболевания обусловлены тем, что все клетки организма способны вырабатывать АФК и соответственно образование окислительного стресса может появиться в любом органе человека.

! Каждый 3-й человек в мире находится в состоянии окислительного стресса, что в итоге приводит к огромному росту хронических заболеваний, связанных с окислением.

Чрезмерное образование свободных радикалов и малое получение антиоксидантов приводит к большому количеству заболеваний разных типов от воспалительных до хронических. Клинические исследования показали, что из-за сильного окислительного стресса, вызванного свободными радикалами, возникает более 80 видов заболеваний, таких как онкологические, сердечно-сосудистые, метаболические, дегенеративные, воспалительные и другие.

Заболевания, связанные с оксидативным стрессом из-за свободных радикалов:

  • Старение организма.
    На сегодняшний момент окисление является основной причиной старения человека так как данный процесс происходит постоянно и не прерывно окисляет весь организм изнутри, в результате ускоряется износ организма.
  • Заболевания сердечно-сосудистой системы.
    Свободные радикалы окисляют многие клеточные структуры, в том числе липиды, вызывая явление, известное как перекисное окисление липидов. Вследствие разрушения молекул мембран клеток, возникают атеросклеротические бляшки, которые часто являются причиной атеросклероза, сердечно-сосудистых проблем, таких как инфаркт, гипертония или инсульт.
  • Онкологические заболевания
    При окислительном стрессе происходит повреждение липидов и молекул ДНК, что приводит к нарушениям в генетическом коде клетки т.е. к мутации клетки. При нарушении иммунитета, которые борется с мутациями атипичные клетки начинаю размножаться, в результате формируется опухоль.
  • Сахарный диабет 2 типа
    При диабете 2 типа либо тело недостаточно вырабатывает Инсулин или клетки игнорируют инсулин. Инсулин необходим для тела, чтобы иметь возможность использовать глюкозу для получения энергии. Известно, что оксидативный стресс играет важную роль в патогенезе метаболического синдрома, что приводит к ожирению, инсулинорезистентности, гипертонии и дислипидемии.
  • Нейродегенеративные заболевания
    Чрезмерное перекисное окисление липидов, вместе с гибелью нервных клеток и клеток ДНК, может вызвать нейродегенеративные нарушения, такие как болезнь Паркинсона и болезнь Альцгеймера.
  • Аллергические и воспалительные реакции
    Аллергические и воспалительные взаимосвязаны с большим образованием свободных радикалов, что ведет к сильному оксидативному стрессу. В результате, воспалительный процесс только увеличивается и организм испытывает перегрузки.
  • Остеопороз.
    Одной из основных причин остеопороза (заболевание, которое вызывает деминерализацию и хрупкость костей) является именно окислительный стресс.
Читайте также:  О чем предупреждает боль в левом боку - зарубежные новости

Единственным средством борьбы со свободными радикалами являются «антиоксиданты». Поэтому, если употреблять здоровую пищу, то нейтрализация свободных радикалов будет более эффективной.

▼ окислительный стресс и его заболевания ▼

Как снизить окисление организма?

Единственным средством борьбы со свободными радикалами являются «антиоксиданты». Антиоксиданты отдают свой электрон радикалам, тем самым прекращают окислительный процесс.

Важно! Для поддержания своего здоровья, необходимо усиливать антиоксидантную защиту потребляя больше свежих овощей и фруктов и другие продукты, содержащие большое количество антиоксидантов.

Антиоксиданты (второе название антиокислители) – ингибиторы окисления, природные или синтетические вещества, способные замедлять окисление. Эти вещества сглаживают токсичное воздействие свободных радикалов. Они отдают им свой электрон, а затем ослабевают, и преобразовываются в почти неподвижные молекулы, но, тем не менее, пытаются восполнить электрон, который был утрачен.

Антиоксиданты содержатся в живой пище, то есть в овощах, фруктах, зелени, витамин С, лимонная кислота, пектиновые вещества и другие. Но их молекулы слишком большие, в связи с чем, они не могут проникать через мембрану клетки.

С недавнего времени был обнаружен новый очень эффективный антиоксидант – Газообразный водород (Н2). Молекулярный водород признали терапевтическим газом, не имеющий побочных эффектов. Обнаружено, что Н2 способен применяться в качестве «нового антиоксиданта». Физические размеры Н2, позволяют проникать через мембраны клеток, что не доступно крупным антиоксидантным молекулам. При этом важной способностью Н2 является взаимодействие с гидроксильным радикалом (ОН) образуя обычную воды, что делает Н2 не токсичным. Эти способности показывают, что Н2 один из самых эффективных антиоксидантов.

Ранее было сложно доставить терапевтический газ Н2 внутрь организма из-за его легкости и летучести. Сегодня современная и эффективная наука научилась применять медицинский газ Н2 на людях. Высокотехнологичным и в то же время экономным изобретением, способным доставить водород внутрь организма порадовали ученые Японии.

▼ что такое антиоксиданты ▼

ВОДОРОД — НОВЫЙ ТЕРАПЕВТИЧЕСКИЙ ГАЗ, КАК МОЩНЫЙ АНТИОКСИДАНТ !


Ранее было сложно доставить терапевтический газ Н2 внутрь организма из-за его легкости и летучести. Сегодня современная и эффективная наука научилась применять медицинский газ Н2 на людях. Высокотехнологичным и в то же время экономным изобретением, способным доставить водород внутрь организма порадовали ученые Японии.

Как бороться со свободными радикалами в организме

Как известно, традиционно объектами биологической химии являются несколько классов органических соединений, выполняющих в клетке жизненно важные функции – структурную (белки и липиды), энергетическую (липиды и углеводы), регуляторную (ферменты, то есть опять же белки), сигнальную (гормоны) и информационную (нуклеиновые кислоты, то есть ДНК и РНК), а также множество более просто устроенных метаболитов (то есть продуктов распада или, наоборот, “сырья” для синтеза все тех же белков, жиров и углеводов). Из неорганических соединений жизненно важными всегда представлялись в первую очередь вода (как универсальный растворитель) и кислород. Именно с последним оказалось связанным одно из наиболее интересных и “модных” направлений современной биохимии – проблема активных форм кислорода. Что же это такое?

Активные формы кислорода – группа свободнорадикальных молекул, являющихся частично восстановленными производными кислорода (О 2 ) и обладающих очень мощной окислительной способностью. Они, как правило, являются своего рода побочными продуктами работы дыхательной цепи – группы митохондриальных белков, утилизирующих кислород и непрерывно поставляющих клетке энергию в форме соединения, называемого аденозинтрифосфорная кислота (АТФ). Основным таким свободным радикалом является супероксид-радикал (O 2 · – ). Сам по себе он не опасен, но легко превращается в перекись водорода (Н 2 О 2 ), а перекись, в свою очередь – в гидроксил-радикал (ОН·). В ходе других реакций с участием кислорода образуются пергидроксид-радикал (НОО·), а также пероксид- и алкоксид-радикалы. Будучи сильнейшими окислителями, эти соединения крайне опасны для клетки. Они повреждают белки, нуклеиновые кислоты и липиды клеточных мембран. “Всплеск” генерации свободных радикалов (например, при ишемии мозга) способен привести к тотальной гибели клеток и отмиранию больших участков ткани.

Неудивительно, что эволюция “вооружила” клетку целым рядом механизмов антирадикальной защиты. Среди них есть как ферментативные (специальные белки-ферменты катализируют превращение активных форм кислорода в неактивные), так и неферментативные (существует целый ряд соединений-антиоксидантов, например витамин Е, способных непосредственно реагировать со свободными радикалами, нейтрализуя их). В наши дни производится множество антиоксидантов, входящих в состав самых различных лекарственных препаратов (один из наиболее “многообещающих” компонентов таких лекарств – природный антиоксидант карнозин, большой вклад в изучение которого сделал наш соотечественник профессор МГУ А.А.Болдырев). Антиоксидантные препараты представляются перспективными в профилактики и лечении стрессов, инсультов, ишемических и других заболеваний, так или иначе связанных с повышенной генерацией свободных радикалов. Ряд исследователей-геронтологов еще в пятидесятые годов минувшего века полагали, что непрерывно накапливающиеся в клетках свободнорадикальные соединения напрямую ответственны за процессы старения организма (эта теория весьма популярна и поныне). Многие (особенно под влиянием реклам фармацевтических компаний) склонны считать их безусловным злом, с которым непременно надо бороться. При этом не учитывают, что свободные радикалы — не только вредные, но еще и жизненно важные для клетки соединения. Как оказалось, многие из них несут очень важные физиологические функции. Так, гидроксид-радикал необходим для синтеза ряда биологических регуляторов (например, простагландинов), радикалы оксида азота (NO) участвуют в регуляции сокращения стенок кровеносных сосудов, а пероксинитрит стимулирует запрограммированную клеточную гибель (апоптоз). Так что роль свободных радикалов в организме далеко неоднозначна. Именно из-за этого многие антиоксидантные препараты оказались не только малоэффективными, но и вредными для здоровья. Очевидно, будущее – за препаратами, которые будут не подавлять образование свободных радикалов, а регулировать их превращения в клетке.

Ссылка на основную публикацию
Что такое искусственный климакс Зачем нужен Побочные эффекты
Искусственный климакс Время чтения: мин. Искусственный климакс Симптомы искусственного климакса Препараты при искусственном климаксе Существуют ситуации, когда необходимо применить методику...
Что показывает посев мочи на стерильность как правильно его собрать
Лабораторный скрининг инфекций мочевыводящих путей и почек Комплексное лабораторное исследование, направленное на первичное выявление инфекционного процесса в почках и мочевыводящих...
Что показывает флюорография легких какие болезни органов грудной клетки выявляет, фото как делают и
Что видно на снимке флюорографии Беседуем с главным специалистом Екатеринбурга по лучевой диагностике о пользе и опасности рентгена. Главный специалист...
Что такое катаральный гастрит и как лечить причины, симптомы
Катаральный гастрит: причины, лечение и питание Катаральный гастрит является острым воспалением слизистых тканей желудка, которое чаще всего провоцирует однократное воздействие...
Adblock detector