Что такое фотосинтез Как происходит процесс фотосинтеза

Фотосинтетические пигменты находятся

Фотосинтетические пигменты представлены молекулами, способными поглощать кванты света. Поскольку при этом поглощается свет лишь определенной длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отраженного света пигменты приобретают окраску — зеленую, желтую, красную и др. В настоящее время различают три класса фотосинтетических пигментов:

  • хлорофиллы,
  • каротиноиды,
  • фикобилины.

Самым распространенным и наиболее важным фотосинтетическим пигментом является хлорофилл (греч. chloros — зеленоватый, phyllon — лист), который имеется практически у всех фототрофов (фототрофами называются автотрофные организмы, способные к фотосинтезу). Хлорофилл неоднороден, насчитывается свыше десятка зеленых пигментов, отличающихся друг от друга атомными группами, присоединенными к пиррольным структурам порфиринового кольца, а также по некоторым другим характеристикам. Поэтому целесообразно начать с химической характеристики хлорофилла и других фотосинтетических пигментов.

Химически хлорофилл представляет собой сложный эфир дикарбоновой кислоты хлорофиллина с двумя спиртами — фитолом и метанолом. Пространственная структура молекулы определяет свойства хлорофилла. Основой является плоское порфириновое ядро, образованное четырьмя пиррольными кольцами, соединенными между собой метиновыми мостиками, с атомом магния в центре. В порфириновом ядре, кроме собственно пиррола, содержатся также его изомер — пирроленин и продукт неполного восстановления пиррола — пирролин. Поскольку в этих циклических соединениях, помимо атомов углерода, присутствует гетероатом — азот, они называются гетероциклическими. Наличие двойных связей позволяет отнести их к ненасыщенным гетероциклам. Атомы углерода, расположенные в гетероцикле рядом с гетероатомом — азотом, обозначаются как а-атомы, а удаленные от него — d-атомы. Поскольку все связи а-углеродных атомов в молекуле хлорофилла заняты в формировании порфиринового кольца, они не определяют специфику различных видов хлорофилла, эту функцию выполняют d-углеродные атомы. Сами атомы азота взаимодействуют с расположенным в центре ядра атомом металла — магнием (отметим, что у близкого по строению гема, входящего в состав гемоглобина, миоглобина или цитохрома, в центре ядра находится атом железа). Так как в порфириновом ядре имеются многочисленные двойные связи, там присутствуют делокализованные (более подвижные) p-электроны, которых в ядре насчитывается 18.

Фитол относится к дитерпенам, основу которых составляют остатки изопрена.

Такая структура молекулы определяет свойства хлорофилла — гидрофобный фитольный «хвост» надежно удерживает молекулу в гидрофобной части мембраны тилакоида хлоропласта, а гидрофильное порфириновое ядро обращено к строме хлоропласта. При этом само ядро ориентировано параллельно мембране, в которой находится хлорофилл.

Все низшие и высшие растения, а также цианобактерии содержат различные хлорофиллы типа а. У высших растений, зеленых и эвгленовых водорослей имеется хлорофилл b (он образуется из хлорофилла а), который отличается от хлорофилла а присутствием формильной группы -СНО, вместо метильной (-СН3) у третьего атома углерода. Бурые и диатомовые водоросли вместо хлорофилла b содержат хлорофилл с, не имеющий остатка фитола, а красные водоросли — хлорофилл d, который отличается от хлорофилла а тем, что при углеродном атоме 2 порфиринового кольца вместо винильной группы имеется формильный радикал. Хлорофиллы бактерий имеют некоторые специфические особенности и называются бактериохлорофиллами.

Бактериохлорофиллы отличаются от прочих типов хлорофиллов тем, что способны поглощать красный свет гораздо большей длины, чем хлорофиллы растений. Так, бактериохлорофилл зеленых бактерий утилизирует волны длиной 850 нм, бактериохлорофилл а пурпурных бактерий до 900 нм, а бактериохлорофилл b пурпурных бактерий — до 1100 нм. Это обстоятельство позволяет бактериям, особенно пурпурным, активно расти при наличии лишь не видимых человеческим глазом инфракрасных лучей.

Другую обязательную группу фотосинтетических пигментов образуют каротиноиды (лат. carota — морковь). Эти жирорастворимые пигменты имеют различную окраску — от желтой до красной. Они содержатся во всех окрашенных пластидах (хлоропластах и хромопластах) растений. Причем в зеленых частях растений хлорофилл маскирует каротиноиды, делая их незаметными до наступления холодов. Осенью зеленые пигменты разрушаются, и каротиноиды становятся хорошо заметными, определяя окраску осенних листьев. Кроме растений, каротиноиды синтезируют фототрофные бактерии и грибы.

Каротиноиды в растительном организме выполняют ряд функций, среди которых наиболее очевидными являются следующие: участие в фотосинтезе в качестве дополнительных пигментов антенных комплексов. Они способны поглощать свет, не доступный для других пигментов, и передавать его хлорофиллам. Кроме того, каротиноиды ослабляют фотоокисление хлорофилла в присутствии кислорода.

Третьей группой фотосинтетических пигментов являются фикобилины (греч. phykos — водоросль, лат. bilis — желчь), которые присутствуют у некоторых водорослей (красных) и цианобактерий. Отдельными молекулами фикобилины, как правило, не представлены, а образуют комплексы с белками, с которыми они, в отличие от хлорофиллов, связаны прочными ковалентными связями. Комплексы таких пигментов с белками называются фикоби- липротеидами (хромопротеидами).

Фотосинтетические пигменты

У высших растений имеется три группы пигментов: хлорофиллы, каротиноиды и фикобилины.

Основными пигментами, осуществляющими поглощение квантов света в процессе фотосинтеза, являются хлорофиллы, пигменты, содержащие Mg-порфириновый комплекс. Обнаружено несколько форм хлорофиллов, различающихся по химическому строению. Спектр поглощения различных форм хлорофиллов охватывает видимую, ближнюю ультрафиолетовую и ближнюю инфракрасную области спектра (у высших растений от 350 до 700 нм, а у бактерий — от 350 до 900 нм). Хлорофилл а является основным пигментом и характерен для всех организмов, осуществляющих фотосинтез с выделением кислорода (рис 6.5).

У фотосинтезирующих организмов кроме хлорофилла a имеются хлорофиллы b, с и d, которые расширяют спектр поглощения света.

Рис. 6.5. Строение хлорофилла а

В поглощении световой энергии участвуют каротиноиды (пигменты полиизопреноидной природы) — у фотосинтезирующих эукариот, и фикобилины (пигменты с открытой тетрапиррольной структурой) — у цианобактерий и красных водорослей.

В клетке молекулы хлорофилла вместе с другими пигментами, участвующими в процессах поглощения квантов света и передачи энергии, образуют светособирающие хлорофилл-белковые комплексы (ССК). Молекулы ССК имеют максимум поглощения при разной длине волны и расположены от пигмента с максимумом поглощения при меньшей длине волны к пигменту с большей.

Важнейшим структурно-функциональным звеном фотосинтетического аппарата является фотосистема — совокупность ССК, фотохимического реакционного центра и переносчиков электрона.

В процессе фотосинтеза у растений принимают участие две фотосистемы.

Фотосистема I включает светособирающий комплекс и фотохимический реакционный центр I, в состав которого входит димер хлорофилла, поглощающий свет с длиной волны 700 нм (П700).

Читайте также:  Высокое давление – гипертония у детей и подростков Обследование и лечение в Германии CHHG

Фотосистема II включает светособирающий комплекс и фотохимический реакционный центр II, в состав которого входит димер хлорофилла, поглощающий свет с длиной волны 680 нм (П680).

Свет поглощается двумя фотосистемами раздельно, и нормальное осуществление фотосинтеза требует их одновременного участия.

Световая фаза фотосинтеза

Фотосинтез начинается с поглощения квантов света молекулами хлорофилла и другими связанными с ним пигментами. Энергия поглощенных квантов света стекается от сотен молекул пигментов ССК к молекуле пигмента П700 (Е = + 0,43В), которая переходит в возбужденное состояние (Е = ‒ 0,80 В) и легко отдает электрон первичному акцептору (фотохимическая реакция). Электрон с первичного акцептора, которым является мономерная форма хлорофилла а, передается на филлохинон (витамин К) – вторичный акцептор и затем на железосерные белки. Следующим переносчиком является железосодержащий белок ферредоксин (Е = ‒ 0,43В). Ферредоксин содержит два атома железа в негеминовой форме. От ферредоксина электрон переносится на НАДФ (Е = ‒ 0,32В). Этот перенос осуществляется с помощью специфического белка-фермента (ферредоксин-НАДФ-редуктазы), коферментом которого является ФАД.

Последовательность расположения переносчиков определяется величиной окислительно-восстановительного потенциала: электроны спонтанно текут в сторону менее отрицательного окислительно-восстановительного потенциала (рис. 6.6).

Рис 6.6. Электрон-транспортная цепь в мембране тилакоида

Отдав электрон, П700 остается в виде ионизированной молекулы. При этом потенциал П700становится снова + 0,43 В (основное состояние). Благодаря этому он является прекрасным акцептором электронов. Источником электрона, заполняющего эту «дырку», является фотосистема II. Она ответственна за реакции, связанные с разложением воды и выделением кислорода.

В состав реакционного центра фотосистемы II входит хлорофилл а, поглощающий свет с длиной волны 680 нм (П680). Под влиянием поглощенного кванта света возбужденный электрон от П680 (Е = ‒ 0,7 В) воспринимается первичным акцептором, которым является молекула феофитина. Затем электрон передается на пластохиноны, переносящие как электроны, так и протоны. От пластохинона электроны поступают на b/f-комплекс и передаются через железосерный белок на цитохром. Цитохром относится к группе цитохромов с = +0 ,36 В). Воспринимая электрон, цитохром восстанавливается: Fe 3+ + е — —> Fe 2+ . Следующий переносчик — пластоцианин — это медьсодержащий белок, в котором на каждую молекулу белка приходится два атома меди (Е = + 0,37 В), осуществляющих электронный транспорт: Cu 2+ + е — —> Сu + . Пластоцианин выполняет роль связующего звена между b/f-комплексом и фотосистемой I. От пластоцианина электрон заполняет электронную «дырку» у П700.

Заполнение электронной вакансии в молекуле П680 происходит за счёт воды. В состав фотосистемы II входит водоокисляющий комплекс, содержащий в активном центре ионы марганца в количестве 4 штук. Для образования одной молекулы кислорода требуется две молекулы воды, дающие 4 электрона. Поэтому процесс проводится в 4 такта и для его полного осуществления требуется 4 кванта света. Водоокисляющий комплекс находится со стороны внутритилакоидного пространства, и полученные 4 протона выбрасываются внутрь тилакоида.

2Мn 4+ + 2Н2 —> 2Мn 2+ + 4Н + + 4е + 02

Таким образом, в результате работы фотосистемы II происходит окисление 2 молекул воды с помощью 4 квантов света с образованием 4 протонов во внутритилакоидном пространстве. Протоны внутрь тилакоида перекачиваются также через b/f-комплекс за счет энергии, которая выделяется в окислительно-восстановительной реакции при транспорте электронов. В результате на мембране тилакоида создается электрохимический потенциал, который является промежуточной формой запасания энергии и используется для синтеза АТФ протонной АТФ-синтазой.

Помимо полного нециклического пути переноса электрона, описанного выше, может протекать и циклический путь. В этом случае ферредоксин вместо НАДФ + восстанавливает пластохинон, который переносит электрон назад на b/f-комплекс. В результате образуется бóльший протонный градиент и больше АТФ, но не восстанавливается НАДФ + .

Темновая фаза фотосинтеза протекает в строме и не является светозависимой.

С3-фотосинтез (цикл Кальвина, восстановительный пентозофосфатный цикл) состоит из трёх стадий (рис. 6.7):

регенерация акцептора CO2.

Рис. 6.7. Цикл Кальвина

На первой стадии к рибулозо-1,5-бисфосфату присоединяется CO2 под действием фермента рибулозобисфосфаткарбоксилазы.. Этот белок составляет основную фракцию белков хлоропласта и является наиболее распространённым ферментом в природе. В результате образуется промежуточное неустойчивое соединение (С6), распадающееся на две молекулы 3-фосфоглицериновой кислоты (ФГК), которая является первичным продуктом фотосинтеза.

Во второй стадии ФГК фосфорилируется и восстанавливается с образованием глицеральдегид-3-фосфата (ФГА).

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 молекулы рибулозо-1,5-бисфосфата.

Две молекулы ФГА необходимы для синтеза глюкозы. Таким образом, для синтеза 1 молекулы глюкозы требуется 6 оборотов цикла, 6 CO2, 12 НАДФН∙Н + и 18 АТФ.

Интенсивность фотосинтеза зависит в первую очередь от интенсивности и спектрального состава света, концентрации СО2 и О2, температуры, водного режима растения, минерального питания и других факторов внешней среды.

Фотосинтетические пигменты находятся

Гусев М. В., Минеева Л. А. — Микробиология

В представленном в этой главе материале проанализированы энергетические процессы, сформированные на первом этапе эволюции жизни на Земле. То, что брожение — наиболее примитивный способ получения энергии организмами, в настоящее время никем не ставится под сомнение. Гораздо сложнее оценить, какой путь в процессе эволюции пройден теми или иными организмами. Очевидно, что при имеющихся возможностях обмена генетической информацией в мире прокариот сохранение их в первоначальном виде маловероятно. Описание представленных в этой главе нескольких групп анаэробных эубактерий, в первую очередь, пропионовокислых бактерий и клостридиев, служит иллюстрацией этого.

Глава 14. Фотосинтез. Типы жизни, основанные на фотофосфорилировании

В предыдущей главе был рассмотрен ряд групп прокариот, относящихся к эубактериям, получающих энергию в реакциях субстратного фосфорилирования и не зависящих от молекулярного кислорода. Их предки появились на Земле, когда в ее атмосфере отсутствовал O2. Единственным источником свободной энергии, доступным первобытным организмам, была химическая энергия органических молекул, возникших в основном абиогенным путем. Увеличение численности популяций приводило к возрастанию использования органических молекул в окружающей среде, которое на определенном этапе стало превышать их накопление. В результате органические вещества постепенно исчерпывались из среды. Создавалась критическая ситуация, вызываемая нехваткой соединений, которые могли бы служить источником свободной энергии для организмов. Перед ними возникла проблема поиска новых источников углеродного питания и свободной энергии. В энергетическом плане необходимо было найти способ получения энергии за счет постоянно действующего источника. Такой источник энергии представляет собой солнечная радиация. Глобальное значение развившейся способности использовать световую энергию в том, что фотосинтез — единственный процесс, приводящий к увеличению свободной энергии на нашей планете. Таким образом, фотосинтез обязан своим «происхождением» экологическому кризису, возникшему в результате исчерпания на определенном этапе развития жизни органических ресурсов планеты.

Читайте также:  Пройти тест на шизофрению онлайн бесплатно – клиника Равновесие

Жизнь за счет анаэробных превращений органических субстратов привела к возникновению анаэробной формы жизни за счет света. Для этого прежде всего должны были возникнуть молекулы, поглощающие кванты света. Когда сформировались структуры для улавливания света, появилась возможность использования световой энергии. То, как эта возможность реализовывалась, доказывает наличие нескольких типов фотосинтеза, осуществляемого разными группами эубактерий, энергетический метаболизм которых полностью или частично основан на использовании энергии света. Фотосинтезирующие эубактерий представлены пурпурными и зелеными бактериями, гелиобактериями, цианобактериями51 и прохлорофитами.

51 В ботанической литературе — сине-зеленые водоросли.

Пигменты фотосинтезирующих эубактерий

Для абиогенного синтеза органических веществ в основном требовался ультрафиолет. Все известные в настоящее время фотосинтезирующие организмы используют в процессе фотосинтеза видимый и инфракрасный свет. Наиболее богатые энергией ультрафиолетовые лучи в фотосинтезе практически не используются (см. рис. 35). Это связано с фотохимическими эффектами разных частей спектра, рассмотренными ранее.

Фотосинтезирующие эубактерий обязательно содержат магнийпорфириновые пигменты — хлорофиллы. Известно больше десяти видов хлорофиллов, но все они поглощают свет видимой и инфракрасной частей спектра.

Вероятно, первыми фоторецепторами, предшественниками современных хлорофиллов, следует считать порфирины, структура которых обеспечивает поглощение умеренно энергизованных квантов света. Экспериментально показана возможность синтеза порфиринов абиогенным путем из простых веществ в условиях, имитирующих условия первобытной Земли.

Важным моментом в эволюции порфиринов явилось включение ионов металла в центр порфиринового ядра. Все порфирины, обладающие фоторецепторным действием, являются магниевыми комплексами. Порфирины, участвующие в темновом транспорте электронов (цитохромы), а также ферменты каталаза и пероксидаза содержат в центре порфиринового кольца атом железа.

Итак, способность организмов существовать за счет энергии света в первую очередь связана с наличием у них специфических фоторецепторных молекул — пигментов. Набор пигментов характерен и постоянен для определенных трупп фотосинтезирующих эубактерий. Соотношения между отдельными пигментами колеблются в зависимости от вида и условий культивирования. В целом фотосинтетические пигменты эубактерий обеспечивают поглощение света с длиной волны в области 300 — 1100 нм.

Все фотосинтетические пигменты относятся к двум химическим классам соединений: 1) пигменты, в основе которых лежит тетрапиррольная структура (хлорофиллы, фикобилипротеины); 2) пигменты, основу которых составляют длинные полиизопреноидные цепи (каротиноиды). Особенность химического строения молекул всех фотосинтетических пигментов состоит в наличии системы сопряженных двойных связей52, от количества которых зависит способность пигментов улавливать бедные энергией кванты света, а также защита каротиноидами хлорофилла от синглетного кислорода.

52 Сопряженными называются двойные связи, чередующиеся с простыми, т. e. -CH=CH-СH=CH-.

Хлорофиллы

Рис. 68. Обобщенная формула хлорофиллов. Римскими цифрами указаны пиррольные кольца. Химическая природа радикалов R1 — R7 приведена в табл. 19

У фотосинтезирующих эубактерий известно больше десяти видов хлорофиллов (рис. 68, табл. 19). Хлорофиллы эубактерий, осуществляющих бескислородный фотосинтез (пурпурные и зеленые бактерии, гелиобактерии) получили общее название бактериохлорофиллов. Идентифицировано 6 основных видов бактериохлорофиллов: а, b, с, d, e, g53. Все пурпурные бактерии содержат какую-либо одну форму бактериохлорофилла: a или b. Небольшие различия в химическом строении приводят к существенным изменениям в спектральных свойствах этих пигментов. Пурпурные бактерии, содержащие бактериохлорофилл a, могут поглощать свет с длиной волны до 950 нм. У видов, имеющих бактериохлорофилл b, максимум поглощения в красной части спектра сдвинут в длинноволновую область больше чем на 100 нм и приходится на 1020 — 1030 нм, а граница поглощения продвинута до 1100 нм. Дальше бактериохлорофилла b не поглощает ни один известный фотосинтетический пигмент. Основными хлорофилльными пигментами зеленых бактерий являются бактериохлорофиллы с, d или e, незначительно различающиеся между собой по спектрам поглощения (табл. 19). Кроме них в клетках всех зеленых бактерий в небольшом количестве содержится бактериохлорофилл a. Наличие этих бактериохлорофиллов позволяет зеленым бактериям использовать свет с длиной волны до 840 нм. Необычный бактериохлорофилл g с максимумом поглощения 790 нм обнаружен у облигатно анаэробных фотосинтезирующих бактерий Heliobacterium chlorum и Heliobacillus mobilis, выделенных в группу гелиобактерий.

53 Бактериохлорофиллы a, b и c, по последним данным, существуют в нескольких модификациях, так как радикал R6 может быть фитолом, фарнезолом, геранил-гераниолом или другим многоатомным спиртом (табл. 19).

Эубактерии, фотосинтез которых сопровождается выделением молекулярного кислорода (цианобактерии и прохлорофиты), содержат хлорофиллы, характерные для фотосинтезирующих эукариотных организмов. У цианобактерий — это хлорофилл a, единственный вид хлорофилла, обнаруженный в этой группе; в клетках прохлорофит — хлорофиллы a и b. Присутствие этих пигментов обеспечивает поглощение света до 750 нм.

Для всех хлорофиллов характерно наличие нескольких максимумов по глощения. В клетке спектральные свойства хлорофиллов определяются нековалентными взаимодействиями молекул пигмента друг с другом, а также с липидами и белками фотосинтетических мембран.

Фикобилипротеины

Таблица 19. Различия в химическом строении хлорофиллов фотосинтезирующих эубактерий и основные максимумы их поглощения в клетке

Химическая природа радикалов, указанных на рис. 68

Основной максимумпоглощения в клетке, нм

Фикобилипротеины — красные и синие пигменты, содержащиеся только у одной группы эубактерий — цианобактерий54. Хромофорная группа пигмента, называемая фикобилином, ковалентно связана с водорастворимым белком типа глобулина и представляет собой структуру, состоящую из четырех пиррольных колец, но не замкнутых, как в молекуле хлорофилла, а имеющих вид развернутой цепи, не содержащей металла (рис. 69). Молекулы фикобилипротеинов состоят из двух нековалентно связанных неидентичных субъединиц — a и b, к каждой из которых ковалентно присоединены хромофорные группы: фикоэритробилин или фикоцианобилин. Некоторые данные относительно строения и спектральных свойств фикобилипротеинов цианобактерий приведены в табл. 20.

34 Фикобилипротеины содержатся также у двух групп эукариот: красных и криптофитовых водорослей.

Таблица 20. Строение и спектральные свойства основных фикобилипротеинов цианобактерий

Читайте также:  Прививка Манту когда и кому проводится, реакции и осложения

Субъединичный состав мономера

Число и тип молекул хромофоров, связанных с субъединицами*

Состояние пигмента в клетке

Основной максимум поглощения, нм

* ФЭБ — фикоэритробилин; ФЦБ — фикоцианобилин.

Различия в спектральных свойствах фикобилипротеинов определяются аминокислотной последовательностью a- и b-полипептидов, числом и типом присоединенных к ним хромофорных групп, а также степенью агрегирования. Так, переход аллофикоцианина из мономерного состояния в гримерное сопровождается изменением максимума поглощения от 616 до 654 нм. Степень агрегирования зависит от вида и возраста культуры, а также от внешних факторов: pH, ионной силы раствора, температуры. В основе агрегирования молекул фикобилипротеинов лежат гидрофобные взаимодействия между мономерами. Значение способности фикобилипротеинов к агрегированию становится понятным при формировании ими фикобилисом — структур, в которых эти пигменты организованы в агрегаты высокого порядка.

Рис. 69. Химическая структура хромофорных групп фикоэритрина (фикоэритробилин), фикоцианина и аллофикоцианинов (фикоцианобилин). Римскими цифрами указаны пиррольные кольца (по Chapman, 1973)

Фикобилипротеины обеспечивают в клетках цианобактерий поглощение света в области 450 — 700 нм и с высокой эффективностью (больше 90%) передают поглощенный свет на хлорофилл, при этом основное количество энергии передается на хлорофилл, связанный со II фотосистемой. Все цианобактерий содержат небольшие количества аллофикоцианина и его длинноволновой формы — аллофикоцианина B, а также значительные количества фикоцианина, одного из основных клеточных пигментов, содержание которого в условиях низкой освещенности может достигать 60% от общего уровня растворимых белков клетки. Некоторые цианобактерий содержат также второй основной фикобилипротеин — фикоэритрин. Способность синтезировать фикоэритрин может быть конститутивным свойством организма или индуцироваться в определенных условиях освещения.

Каротиноиды

К вспомогательным фотосинтетическим пигментам, которые содержат все фотосинтезирующие организмы, относятся каротиноиды, большая группа химических соединений, представляющих собой продукт конденсации остатков изопрена:

Большинство каротиноидов построено на основе конденсации 8 изопреноидных остатков. У некоторых каротиноидов полиизо- преноидная цепь открыта и не содержит циклических группировок. Такие каротиноиды называются алифатическими. У большинства на одном или обоих концах цепи расположено по ароматическому или (3-иононовому кольцу. Каротиноиды первого типа относятся к арильным, второго — к алициклическим. Выделяют также каротиноиды, не содержащие в молекуле кислорода, и кислородсодержащие каротиноиды, общее название которых ксантофиллы.

Состав каротиноидов фотосинтезирующих эубактерий разнообразен. Наряду с пигментами, одинаковыми у разных групп, для каждой из них обнаружены определенные каротиноиды или наборы последних.

Рис. 70. Структурные формулы некоторых каротиноидов фотосинтезирующих эубактерий (по Кондратьевой, 1972; Nichols, 1973)

Наиболее разнообразен состав каротиноидных пигментов у пурпурных бактерий, из которых выделено свыше 50 каротиноидов. В клетках большинства пурпурных бактерий содержатся только алифатические каротиноиды, многие из которых принадлежат к группе ксантофиллов. У некоторых пурпурных серобактерий обнаружен арильный моноциклический каротиноид окенон, а у двух видов несерных пурпурных бактерий найдено небольшое количество (3-каротина, алициклического каротиноида, распространенного у цианобактерий и фотосинтезирующих эукариотных организмов. Структурные формулы некоторых характерных для пурпурных бактерий каротиноидов представлены на рис. 70, 2 — 5. Набор и количество отдельных каротиноидов определяют окраску пурпурных бактерий, густые суспензии которых имеют пурпурно-фиолетовый, красный, розовый, коричневый, желтый цвета.

Зеленые бактерии по составу каротиноидов отличаются от пурпурных. Основные каротиноиды зеленых серобактерий — арильные, содержащие 1 или 2 ароматических кольца, а также алициклический каротиноид g-каротин (рис. 70, 6 — 9). Иной состав каротиноидов у зеленых нитчатых бактерий. Эта группа эубактерий, цианобактерий и прохлорофиты содержат алициклические каротиноиды с одним или двумя b-иононовыми кольцами. Основной пигмент — b-каротин, составляющий иногда больше 70% общего количества каротиноидов клетки. Специфическим ксантофиллом этих групп является эхиненон, а также гликозидные производные некоторых кислородсодержащих каротиноидов типа миксоксантофилла (рис. 70, 1, 10, 11).

Каротиноидные пигменты поглощают свет в синем и зеленом участках спектра, т. е. в области длин волн 400 — 550 нм. Эти пигменты, как и хлорофиллы, локализованы в мембранах и связаны с мембранными белками без участия ковалентных связей. Функции каротиноидов фотосинтезирующих эубактерий многообразны. В качестве вспомогательных фотосинтетических пигментов каротиноиды поглощают кванты света в коротковолновой области спектра, которые затем передаются на хлорофилл. У цианобактерий энергия света, поглощенная каротиноидами, поступает в основном в I фотосистему. Эффективность передачи энергии для разных каротиноидов колеблется от 30 до 90%. Известно участие каротиноидов в осуществлении реакций фототаксиса, а также в защите клетки от токсических эффектов синглетного кислорода.

Спектры поглощения клеток разных групп фотосинтезирующих эубактерий

Пигментные наборы фотосинтезирующих эубактерий позволяют им использовать весь диапазон длин волн падающей на Землю солнечной энергии (рис. 71; см. рис. 35). Обращает внимание большое различие в спектрах поглощения у представителей разных групп фотосинтезирующих организмов и прежде всего существенные сдвиги в максимумах поглощения хлорофиллов в красной области спектра. Несомненно экологическое значение этого явления, позволяющего избегать конкуренции за свет между разными группами фотосинтезирующих организмов. Что же касается эволюции спектров поглощения хлорофиллов, то очевидна тенденция к перемещению в более коротковолновую часть спектра с более высоким энергетическим уровнем.

Строение фотосинтетического аппарата эубактерий

Рис. 71. Спектры поглощения клеток эукариотной зеленой водоросли Chlorella pyrenoidosa и представителей разных групп фотосинтезирующих эубактерий: цианобактерии (Anacystis nidulans, Synechococcus), зеленых (Chlorobium limicola, Prosthecochloris aestuarii) и пурпурных (Chromatium okenii, Rhodopseudomonas viridis) бактерий

Фотосинтетический аппарат основных групп эубактерий организован по-разному. Это проявляется как в химической природе составляющих его компонентов (набор пигментов, состав переносчиков электронов), так и в структурной организации в клетке. Фотосинтетический аппарат состоит из трех основных компонентов: 1) светособирающих пигментов, поглощающих энергию света и передающих ее в реакционные центры; 2) фотохимических реакционных центров, где происходит трансформация электромагнитной формы энергии в химическую; 3) фотосинтетических электронтранспортных систем, обеспечивающих перенос электронов, сопряженный с запасанием энергии в молекулах АТФ. В фотохимической реакции участвуют, как правило, хлорофиллы или бактериохлорофиллы a в модифицированной форме. Эти же виды хлорофиллов, наряду с другими, а также пигментами иных типов (фикобилипротеины, каротиноиды) выполняют функцию антенны. У некоторых пурпурных бактерий, содержащих только бактериохлорофилл b, он выполняет обе функции. У недавно описанных гелиобактерий бактериохлорофилл g также служит светособирающим пигментом и входит в состав реакционного центра (табл. 21).

Ссылка на основную публикацию
Что такое искусственный климакс Зачем нужен Побочные эффекты
Искусственный климакс Время чтения: мин. Искусственный климакс Симптомы искусственного климакса Препараты при искусственном климаксе Существуют ситуации, когда необходимо применить методику...
Что показывает посев мочи на стерильность как правильно его собрать
Лабораторный скрининг инфекций мочевыводящих путей и почек Комплексное лабораторное исследование, направленное на первичное выявление инфекционного процесса в почках и мочевыводящих...
Что показывает флюорография легких какие болезни органов грудной клетки выявляет, фото как делают и
Что видно на снимке флюорографии Беседуем с главным специалистом Екатеринбурга по лучевой диагностике о пользе и опасности рентгена. Главный специалист...
Что такое катаральный гастрит и как лечить причины, симптомы
Катаральный гастрит: причины, лечение и питание Катаральный гастрит является острым воспалением слизистых тканей желудка, которое чаще всего провоцирует однократное воздействие...
Adblock detector